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FOREWORD

The U.S. Army has embarked on a line of research to evaluate and improve
its existing selection and classification system. Toward this goal, the
Selection and Assignment Research Unit (SARU) of the Manpower and Personnel
Research Division (MPRD) at the U.S. Army Research Institute for the Behav-
joral and Social Sciences (ARI) contracted with the Human Resources Research
Organization to identify and evaluate alternative selection and classification
models. As part of this contract, this report presents both an exposition of
the methodological framework for evaluating selection and classification
models, and an application of this framework.

EDGAR M. JOHNSON
Director
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PERSONNEL ENLISTMENT TESTING, JOB PERFORMANCE, AND COST: A COST-EFFECTIVENESS
ANALYSIS

EXECUTIVE SUMMARY

Requirement:

The Army strives toward efficient personnel selection and classification
methods. Although considerable progress has been made over the years, the
more the Army can learn about the costs and benefits of alternative selection
and classification methods, the more effective its personnel management sys-
tems can be. The goals of the Selection and Classification Models project
were to (1) describe existing military selection and classification proce-
dures, (2) formulate a set of alternative models, (3) develop an evaluation
framework and associated criteria for comparing the cost-effectiveness of
alternative models, and (4) assess the feasibility of the evaluation proce-
dures. Previous reports addressed the first three goals. This report
describes the pilot test of a Selection and Classification Evaluation Model
(S&CEM) .

Procedure:

A cost-effectiveness approach that considers both the desired level of
performance and the costs of obtaining that performance goal was employed to
evaluate the efficiency of alternative test batteries for selection and clas-
sification. A linear programming (LP) model was used to estimate the cost-
effectiveness of the batteries by simulating a one-stage simultaneous selec-
tion and classification process. This framework utilized performance
prediction equations for nine occupational areas computed from a given
battery, along with training, compensation, and recruiting costs, and solved
for the most cost-effective mix of recruits that met the performance goals for
each job family. Data were obtained from the Project A database to evaluate
four test batteries. Battery A was the Armed Forces Qualification Test
(AFQT). Battery B contained the verbal, quantitative, technical, and speed
composites of the Armed Services Vocational Aptitude Battery (ASVAB). Battery
C added a spatial composite to the ASVAB and Battery F added ABLE, a measure
of the willingness to perform, to Battery C. The potential value of improved
testing (e.g., Battery A versus Battery C) was estimated as the reduction in
total cost necessary to meet the established performance goals for all jobs.
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Findings:

The LP cost estimates suggested that adding a spatial composite to the
ASVAB may save up to $114 million in recruiting, training, and compensation
costs for an Army recruit cohort over four years. The results also indicated
that the spatial composite would be particularly useful in finding occupa-
tional areas where lower quality recruits (i.e., AFQT Category IIIB and IV)
with above average spatial ability would perform well. Including ABLE in an
enlistment test battery was estimated to save an additional $160 million
relative to Battery C. However, a higher quality mix of recruits was chosen
when the information provided by ABLE was used to make selection and classifi-
cation decisions. This pilot test confirmed the potential of the LP method,
within the context of a cost-effectiveness framework, to provide relatively
clear answers to questions about the relative value of alternative selection
and classification batteries.

These savings estimates should not be considered as absolute values
given that validities were obtained from more or less ideal experimental
conditions. Further, the "savings" do not consider the developmental and
implementation costs of the additional/alternative measures. However, the
S&CEM is a useful tool for examining alternative selection and classification
batteries in terms of their cost-effectiveness. .

Utilization of Findings:

The methods developed and tested in connection with this phase of the
research effort were used to assess the effectiveness and efficiency of alter-
native enlistment test batteries. The evaluation framework can be applied to
a number of different policy issues facing the Army. Examples of some speci-
fic policy questions and issues that may be evaluated with the current frame-
work include

(1) How would results change if we include more realistic factors,
such as applicant preferences and training seat availability,
directly in the simulations? What is the value (cost) of limiting
(expanding) applicant choices in classification?

(2) What are the expected costs associated with eliminating a test,

such as Numerical Operations, from the current selection and
classification battery?
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(3)

(4)

What is the "optimal" set of tests to include in an aptitude
battery? Can an "optimal" battery be constructed using the
framework?

What is the dollar value of the tradeoff between tests with less
adverse impact, but less predictive precision?

ix
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PERSONNEL ENLISTMENT TESTING, JOB PERFORMANCE, AND COST:
A COST-EFFECTIVENESS ANALYSIS

I. Introduction

What is the value to the Army of additional selection and classification
tests? What is the cost, if any, of eliminating some of the tests that are
now given to Army applicants? These are practical questions that have plagued
researchers as well as policy makers in the military testing field and, more
broadly, in the aptitude testing and entrance screening applications of
industrial psychology and psychometrics. Answers to these questions will help
the Army determine the resources that should be allocated to selection and
classification testing in general. A framework that provides estimates of the
payoff of selection and classification testing, in terms of savings in real
budget expenditures, will help the Army determine which tests have low payoffs
and, perhaps, should be eliminated. It will also help to focus testing
research and development on those areas where the returns are apt to be the

highest.

In this report, we present both an exposition of the methodological
framework for evaluating selection and classification tests, and an
application of this framework. The cost-effectiveness framework we developed
to answer the questions raised in the opening paragraph permits us to estimate
the value of selection and classification testing in terms of the dollar cost
of recruiting, training, and compensation resources necessary to obtain a
first-term enlisted force of a desired capability or expected performance
level. 1In this framework, better selection and classification tests affect
these expenditures by (a) screening out applicants who are not likely to
provide a cost-effective contribution to first-term readiness of the force and
(b) determining the best match of an applicant's aptitudes with the demands of
the occupation, so that the best use is made of the soldier's talents. We
apply this framework to four progressively complex batteries of selection and
classification tests, and obtain the incremental value, in terms of
recruiting, compensation, and training expenditures saved, of the information
provided by additional testing.

Objectives

The more the Army can learn about the costs and benefits of alternative
selection and classification methods, the more effective its personnel
management systems can be. Ideally, a simulation would permit evaluation of a
full range of "what if" questions focused on the effects of changes in
(a) labor supply, (b) recruiting procedures, (c) selection and classification
measures, (d) decision-making algorithms, (e) applicant preferences,

(f) various organizational constraints, and (g) changing organizational
missions on such things as (1) the distribution of individual performance in
each job, (2) attrition, (3) discipline problems, and (4) morale. Further, it
would be desirable to have a good estimate of the specific costs involved in
each change.

Though a comprehensive "what if" capability is not possible currently,
the Army is now in a good position to take major steps toward such a personnel
management capability. The Project A database (Campbell & Zook, 1990) makes
it possible to begin exploring the limits of the gain that classification can
provide compared to random assignment. This database provides (1) a full
range of criterion variables that can be used to model alternative selection
and classification goals, (2) an extensive battery of new tests that sample a
broad range of different predictor domains, and (3) a sample of jobs chosen to
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represent the full range of Military Occupational Specialties (MOS) in the
Army. Project A and the Linkage Project (Harris et al., 1991; McCloy et al.,
1992) provide the rudiments of a capability to answer questions about the
costs and benefits of alternative selection and classification models.
Accordingly, the current project had the following objectives:

(1) Describe the existing selection and classification procedures of the
Army, Navy, Air Force, and Marines, documenting all decision points,
the information used at each, the constraints that operate, etc.

(2) Formulate a set of selection and classification models using
existing databases, research results, and organizational policy.

(3) Develop criteria and an evaluation framework to compare the costs
and effectiveness of the alternative models.

(4) Pilot test the feasibility of the evaluation framework.

Three of the objectives have been accomplished. Laurence and Hoffman
(1993) described existing selection and classification procedures and
formulated a set of alternative selection and classification models. Hogan,
McCloy, Harris, and McWhite (1993) detailed the criteria and a framework to
evaluate the cost-effectiveness of the alternative selection and
classification models. This report describes the pilot test of the evaluation

framework.

The pilot test had two purposes. The first purpose was to develop and
test the Selection and Classification Evaluation Model (S&CEM). The second
was to evaluate alternative sets of selection and classification methods.
There were two key issues that shaped the structure of the cost-effectiveness
model. First, the model had to estimate the potential dollar value to the
Army of improved selection and classification methods. Second, the model had
to be sufficiently flexible to consider both single-stage and multi-stage
selection and classification systems. Using this design strategy, the savings
from more intensive testing of an already selected group could be estimated.

Hogan et al. (1993) described four general selection and classification
models. One model was the present selection and classification system used by
the Army. In this model, most applicants are sent to a Military Examination
Processing Station (MEPS) or Mobile Examination Team (MET) site where they
complete the Armed Services Vocational Aptitude Battery (ASVAB) for the
record. Their scores on the ASVAB (e.g., the Armed Forces Qualification Test
(AFQT) and the Aptitude Area (AA) composite scores) are used to select and
classify the applicants to specific Military Occupational Specialties (M0S).
The AFQT score serves as the principal selection measure. The classification
decisions are based on the various AA composite scores. Each MOS has certain
AA composite "cut" scores that must be exceeded by the recruit for him or her
to be eligible. In practice, the AA "cut" scores are set such that most
recruits qualify for all MOS. The Army's system is a two-stage model because
the selection and classification processes are independent.

A two-stage model differs from a single-stage model in which selection
and classification occur simultaneously. The major distinction between the
two models is that the classification process in a single-stage procedure at
least partially determines the nature of the selected group, i.e., the recruit
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quality mix, and therefore, also impacts on recruiting costs. This is not
true in a two-stage model, where the recruiting costs are solely a function of
the selection strategy. Classification, in this case, means assigning a pre-
determined pool of applicants to jobs. Since the cost-effectiveness model
developed in this study was designed to measure system efficiency in terms of
the recruiting, training, and compensation costs necessary to meet performance
goals, a single-stage model was examined in the pilot test.

The operational distinction between selection and classification
occuring in a single-stage, or in two discrete stages, is whether the process
of classification affects the nature of the population being classified, or
whether this population is held constant. If it is held constant, it is
determined by selection. Recruiting costs are no longer relevant, because
they have been determined by the selection stage. On the other hand, if the
classification also affects the distribution of entrants (i.e., single-stage
model), recruiting costs must be considered. In particular, if classification
takes into account a particular applicant characteristic (e.g., AFQT score)
and determines the number of entrants with that characteristic, then the costs
of increasing (or decreasing) the number of entrants with that characteristic
must be considered. That is, the supply conditions of that characteristic
must be considered. Since one of the objectives of the pilot test was to
estimate the potential dollar value of improved selection and classification
information we wanted to estimate the total cost (i.e., recruiting, training,
and compensation) associated with selection and classification. Thus, the
pilot test of the S&CEM was conducted using a single-stage (i.e., simultaneous
se]ection)and classification) variant of the Army's two-stage system (Hogan et
al., 1993).

This report is organized as follows. Chapter II outlines the
development and pilot testing of the S&CEM. Chapter III describes the results
of the cost-effectiveness analyses of four selection and classification
batteries. A discussion of the implications of the cost-effectiveness
evaluation is presented in Chapter IV, along with policy ramifications and
approaches for mitigating potential weaknesses through additional research and
development. To put the S&CEM in perspective, the next section presents a
brief discussion of previous efforts to evaluate selection and classification
methods.

Previous Research on the Value of Selection and Classification

Existing criteria for evaluating testing methods stem largely from
Brogden (1946, 1949). This seminal model, and contributions that followed in
the same or similar spirit (most notably, Cronbach & Gleser, 1965; Hunter &
Schmidt, 1982), focused largely on the selection criterion for a single job
emphasizing the statistical relationship between predictor variables and the
criterion or outcome variable. The stronger the statistical relationship
between the predictors and the criterion or outcome variable, the better or
more valuable the particular predictor or set of predictors is judged as a
screening or classification tool.

v A necessary condition for the efficacy of any selection or screening
method is that its prediction of performance (conditional on the predictor or
predictors) improves upon an unconditional prediction or the expected outcome
under a random hiring or assignment policy. Whatever value the screening
method may have will be a monotonic function of (and in some cases
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proportional to) the ability to improve upon the unconditional prediction of
performance. This, perhaps, explains the initial focus on the statistical
relationship between screening variables and performance as the primary
criterion from which to judge testing methods. However, it became apparent
that this was not a sufficient criterion. A statistical measure, such as the
coefficient of determination or validity coefficient, does not address the
economic value of selection (or classification). Thus, the focus has shifted
toward the net benefits, in dollar terms, of a given selection (and/or
classification) method to an employer.

We consider, first, criteria for evaluating the benefits of selection
for a single job. Given the fundamental ideas from this literature, we will
then consider "classification"--assignment of individuals across jobs based on
differences in aptitudes and expected performance, and finally, simultaneous
selection and classification decisions. This literature is also reviewed in
somewhat greater detail in Zeidner and Johnson (1989).

In these models, the concept of selection "utility" is derived as
follows. Let y; be the dollar value of output or performance of the it
individual. Then, we can estimate the relationship between y; and a predictor
variable, such as the individual's score on an aptitude test txi), through the
lTinear regression

yi=o+ BX; -y (1)

where a is a constant and B is the slope coefficient of the predictor, X,. In
this exposition, y; is the dollar value of the output, or performance metric,
for individual i, and p; is a residual with p; ™ N(O,oz).

In this equation, o = Y' - BX*, where "*" denotes the sample mean of the
variable. Random selection of applicants implies that the average test score
is X and average performance is Y . The increase in value or "utility" from
setting a "cut" score for X, such that the mean value of X for those offered
(and accepting) the job is X', is given by

AU=N[(a+BX)-(a+BX*)] (2)
which is equal to
AU = NB X/ (3)

when X is measured as a Z score based on the applicant population. _The more
readily recognized equation is obtained by noting that B = Zy-xi/(ZXZi) when X
and Y are measured as deviations from the mean. This is equal to TyOy/ O
where r,  is the correlation coefficient between x and y, and "¢" denotes the
standard deviation. If X is measured in standard normal form, o,=1; hence

AU = Nr, 0, X (4)

where o, or SD, as it is denoted in much of the literature, is the dollar-
valued $tandard deviation in performance. The dollar increase in utility
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associated with the selection of an applicant with mean predictor X’ is the
above expression divided by N, the number of entrants.

The equation derived above is the fundamental relationship used to
describe the economic value or benefits of selection. In practice, the
criterion variable, y, is a physical measure of on-the-job performance, and
not a dollar measure. Dollar values enter the equation through o,, the
standard deviation in individual performance. Attempts have been made to
estimate the dollar value to the employer of a standard deviation in
individual performance either through subjective estimation (expert judgment)
or cost accounting methods (Hunter & Schmidt, 1982).

The above model employs only a single predictor or explanatory variable.
The model itself can be expanded as a multivariate regression model, with k
explanatory or predictor variables. The form of the regression model is

k
J=1

where P is the dollar value of a physical unit of performance, y;; the X;; are
the characteristics of the applicant, which may include test scores but may
also include other characteristics that are related to performance; and

oPy;

= Bj (6)

where B is the dollar value of the change in performance when the
characteristic X; increases. In this equation, the value of selection for a
new entrant cohort of size N is given by

k
N*E [Py, -Py*] = NxY (X9, -X";) B, (7)
51

where X, is the mean of characteristic X, for a randomly selected applicant
group, and X%, is the mean of characteristic j for the group selected on the
basis of pred%cted performance.

This equation is equivalent to the original Brogden equation in both the
univariate and multivariate case. The dollar value of performance, P, is
multiplied by the measure of output or performance in physical units, y, prior
to estimating the multivariate regression. Then, the coefficients (i.e., the
B;'s) are interpreted as the marginal (dollar) value of characteristic X; in
producing the value of performance, Py. The net dollar value of the selected
group compared to the random group is then given by the expected value of the
difference in performance between the selected group and the random entrants.
The net value of selection is equal to the gross value, from the equations
above, less the cost of developing and applying any selection tests and/or the
costs of collecting other information used for applicant screening.




There are several shortcomings associated with this simple model of the
value of selection. Some of these can be addressed by expanding the model.
However, some conceptual difficulties remain, particularly when the model is
expanded to the public sector.

The simple model fails to explain why entry level selection is needed to
obtain the benefits of a better-than-random distribution of worker
performance. One alternative is simply to let all applicants enter the
organization, observe their actual on-the-job performance for a period
sufficient to provide a reasonable estimate of individual productivity, and
selectively retain the best workers. For entry-level screening to be optimal,
there must be costs associated with this procedure that are reduced through
screening. Obvious costs include: initial hiring or recruiting costs, the
costs of entry-level firm-specific training, any “"damage" costs that can be
imposed on the employer by poorly performing new employees prior to on-the-job
observation of their performance, and costs of monitoring or detecting actual
performance of the recent hires.

Another shortcoming of the basic model is that it does not account for
the costs associated with obtaining new entrants. This takes the model
outside of a traditional decision-theoretic framework because it implies a
zero cost to "type II" errors--rejecting applicants who would have performed
well. In the model, a “cut" score (in terms of X) is set and a distribution
of employees with a mean predictor score above the "cut" score emerges. The
best that can be said is that, implicitly, this distribution of willing
applicants with predictor scores at or above the "cut" score is exogenous,
perhaps reflecting a constant wage offer and a fixed amount of resources
devoted to advertising and other factors that may affect this distribution.
However, if applicants with higher predictor scores are more valuable to the
organization, more resources will be devoted to attracting them, which will
increase the supply. An equilibrium should be reached where the marginal
recruiting costs are just equal to the marginal {expected) benefits of the
higher scoring recruits.

The basic model, however, does not include an explicit supply curve of
applicants of varying potential, as measured by X;. Instead, the distribution
is apparently fixed. In a decision-theoretic framework, the cost of raising
the "cut" score and rejecting some applicants with low values of X, who would
have performed well is higher recruiting costs associated with obtaining the
organization's workforce from a smaller population. If, however, the
distribution of willing applicants by predictor score, X, is fixed or
exogenous, this is not part of the decision process. Instead, one simply goes
down the distribution of X's, starting from the highest, until N acceptances
are obtained.

The pool of applicants can become endogenous. For example, by making
the entry-level wage or recruiting expenditures part of the selection
decision, one can increase the number of applicants and be more selective.
This increase in recruiting costs should be balanced with the value of the
increase in expected performance. By making the applicant pool a function of
choices regarding entry wages and recruiting expenditures, the costs of
rejecting applicants who would have been adequate performers is taken into
account in the higher recruiting and entry wage costs that resuilt.




If an employer has many jobs but only a specific, non-overlapping
population applies for each type of job, or if all marginal costs and marginal
products are the same and independent of specific jobs, then fhere is no
operational distinction between selection and classification.” Conceptually,
however, when there is more than one type of job to be filled in the
organization, one can consider the general case of selection and
classification as two distinct decisions: offering applicants employment in
general (selection) and assigning them to a particular type of job within the
organization (classification). If one makes this conceptual distinction, then
the criteria for classification efficiency focus on the assignmen} of a given
number of new hires to particular jobs, conditional on selection.

In Brogden's (1951) model, which incorporated multiple jobs, individuals
were assigned to the job for which the criterion score was the greatest. This
criterion for classification, which Zeidner and Johnson (1989) call
maximization of mean predicted performance (MPP), has also been considered the
"optimal" assignment policy:

Optimal assignment of all selected personnel could be accomplished,
without considering constraints, by assigning each recruit to the job
family corresponding to his highest test composite score, thus providing
the largest MPP score obtainable for a specified set of assignment
variables and sample of individuals (Zeidner & Johnson, 1989, p. 1-18).

Given this definition of "optimal assignment," the criteria used to value the
benefits of classification have generally evolved from the original work of
Brogden. Zeidner and Johnson (1989), following Hunter and Schmidt (1982),
noted that the assumption that all jobs are of equal value is undoubtedly
false. Hence, some effort should be made to assign different values or
importance weights to different jobs. Optimal assignment then attempts to
maximize MPP, weighted by these job valuation factors, in a "hierarchical”
model of job assignment.

Estimation of the net benefits of c]a;sification is made with respect to
an alternative policy of random assignment.” The benefits of classification,
compared to random assignment, can be estimated using Brogden's dollar value
of the standard deviation in performance, SDy, in much the same way as it is
done for a single job.

It is important that an individual's expected performance vary across jobs. However, contrary to some
statements in the literature, there is still a classification problem even if an individual's performance is
not predicted to vary across jobs. If the criterion for "optimal™ classification is the maximization of
mean predicted performance (MPP), then the performance of a fixed pool of applicants is independent of
assignments if an individual's expected performance is independent of the assignment. However, if training
costs vary differentially across jobs and individual performance is correlated with training costs, then
under a more complete definition of "optimal"™ classification, assignment will make a difference.

®In principle, one can consider three possible sequences: (a) selection then classification, (b)
classification then selection, and (c) concurrent selection and classification. In general, concurrent
selection and classification will be more efficient because it simultaneously considers all the costs (i.e.,
recruiting, training, and compensation) and benefits associated with a personnel decision.

%Because the performance models in this literature are typically linear, random assignment is
equiv§]ent to assuming that performance is measured as the mean for the sample (i.e., in expected value
terms).




There are several problems with this estimate of the net value of
classification. First, it does not consider training costs, recruiting
costs,” or other costs associated with the personnel system that can be
affected by the allocation of individuals across jobs. Second, when training
and other costs enter the classification decision, the classification rule
should become that of classifying to maximize net benefits, not mean predicted
performance. Net benefits include the estimated value of performance, perhaps
using a variant of Brogden's equation, less the costs of generating that
performance. In many instances, it is likely that training costs (perhaps
through the costs of premature attrition) as well as other costs will vary
with the allocation decisions made. If so, it will no longer be the case that
the "optimal" assignment is necessarily the one that maximizes MPP. In
particular, individuals may not be allocated to jobs for which their predicted
performance is highes}, but to jobs for which their contribution to net
benefits is greatest.” Further, the problems with estimating a dollar value
for performance are now compounded somewhat by the problems associated with
placing relative values or importance weights across jobs.

Finally, for theoretically "optimal" selection and classification
decisions, thsse processes should be conducted simultaneously, not
sequentially.” The reason for this is that the best criterion for selection
and classification is the net benefits of the resulting job match. The net
benefits are the value of the performance expected to be generated in the job
by the match, less the costs (e.g., recruiting and training costs) of
achieving the match. Hence, the selection criteria should be related directly
to the classification criteria. Moreover, the pool of applicants should be
endogenous for joint selection and classification. Recruiting costs and
initial wage offers should be part of the policy variables and costs used to

4Recruiting costs are relevant only if classification affects selection, or if selection and
classification are simultaneous. In the more narrow problem of assigning a fixed number of new recruits
to jobs, recruiting costs are not relevant (i.e., they are sunk costs).

®As an illustration, consider a case with two classes of employees and two types of jobs. Training
costs and expected performance values are shown in the following table:

Classification Decision
Employee Job 1 Job 2
Training Performance Training Performance
A 50 100 60 110
B 80 90 70 90

If individual A is allocated to Job 1, and B to Job 2, net benefits (performance value less training costs)
are $70. If we make the opposite allocation, net benefits are $60. However, to maximize the value of
performance, or MPP, A would go to Job 2.

®An exception to this is if there is reason to economize on classification testing. For example,
suppose there is a classification test that is very costly to administer. Clearly, some less costly forms
of screening or selection should be conducted, with the more expensive tests administered only to those more
1ikely to be ultimately selected.




affect thg applicant pool from which selection and classification decisions
are made.

Overview of the Cost-Effectiveness Method

As seen in the previous section, evaluation of the benefits of a
selection and classification program for hiring new employees has evolved from
the calculation of a very narrow statistical index to a comprehensive analysis
of the effects of a selection and classification system on both the
performance of and cost to the organization. Evaluation methods should
consider selection and classification as part of a personnel management
system, and include not only the effects on the expected performance of new
employees, but also the effects on the costs of recruiting and training
employees, the costs associated with premature attrition, and the total costs
to the organization.

Two general approaches to evaluating selection and classification
methods that take costs into account have been documented in the literature.
The following sections discuss these frameworks.

Net Benefit Criterion

In the first approach, originating with Brogden (1946) and applied most
comprehensively to the Army by Nord and Kearl (1990), an attempt is made to
calculate the net benefit of selection and classification. To do this, one
must compare benefits and costs in a common metric--typically dollars. The
models are compared based on their net benefit--the value of the expected
performance resulting from the model less the cost generated to produce that
expected performance. That is, alternative selection and classification
models are ranked based on

Net Benefit; = V(P;) - C; (P;) - SC; (Py) (8)

where the net benefits associated with alternative j are the value of
performance produced under alternative j, V(PJ), less the costs of producing
that level of performance, C; (PJ), and the costs associated with the selection
and classification process under alternative 3, SC4(P;). V(...) is the
valuation function for performance, C.(...) is a cost’ function for producing
the level of expected performance, P. and SC. ( .) is the cost function for
the selection and classification tes%1ng procedures

Conceptually, this cost-benefit criterion is sound. In practice,
however, it is difficult to specify the valuation function, V(...), which
places a dollar value on performance. Note that there are potentially two
valuation problems: (a) the valuation of performance for a given JOb and
(b) the valuation of performance across jobs. The Brogden approach is one way
to attempt the former. Ultimately, however, this valuation becomes
subjective. We have argued (Hogan, et al., 1993) that it is better to avoid
attempting to place a dollar value on performance, if possible.

"An intuitive proof based on Le Chatelier's Principle, is that permitting the expansion of the
applicant pool (by incurring additional recruiting costs) and setting selection criteria (by looking ahead
to classification decisions) increases the degrees of freedom over which one can optimize. Fixing either of
these reduces flexibility and, therefore, must result in the same or a lower level of net benefits.
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Cost-Effectiveness Criterion

The cost-effectiveness approach holds some measure of desired
performance constant and compares the costs of alternative ways of achieving
that goal.. This is the approach taken in the Rand model (Fernandez &
Garfinkle, 1985), the "opportunity cost" model of Nord and Schmitz (1989), and
the McCloy et al., (1992) accession quality Cost-Performance Tradeoff Model
(CPTM). The value of alternative selection and classification methods is the
cost savings, relative to some baseline in achieving the desired level of
performance.

This approach avoids the difficult problem of placing a dollar value on
expected performance by comparing all alternatives at the same level of
performance. Less efficient selection and classification models will produce
this level of performance only at a higher total cost. Hence, the benefits of
a given alternative are measured as the difference between costs of an
alternative and costs of the baseline.

Because the level of performance is held constant, the value of
performance is also constant across alternatives. Hence, to compare
alternative i with alternative j, we have

Net Benefit,-Net Benefit;=V(P) -C; (P) - SC; (P) (9)
-[v(pP)-C;(P)-8C;(P)]

Because P and V(P) are constant across the alternatives, we have
Net Benefit;-Net Benefit;=C; (P) +SC; (P) -C; (P) -SC; (P)  (10)

Using this equation, alternative models can be ranked based on their cost-
savings relative to a baseline case.

What is lost in the cost-effectiveness formulation is the ability to
compare alternatives that provide different levels of performance or benefits
at different costs. In practice, we do not believe this .is a significant
limitation. Trained, ready, first-term personnel are important components of
the Army's process for producing combat capability. The level of first-term
performance required is derived from the overall Army plan. For the most
part, any model of selection and classification adopted by the Army would be
required to produce about the same level of performance in the first-term
force.

Using either criterion, evaluation of the alternative requires measuring
the effect on the ability to predict performance, based on the information
available under the alternative. Performance equations have to be estimated
that predict an applicant's performance across occupations, conditional on the
information available. This permits the eventual simulation of the effects on
selection and classification decisions. The next chapter describes such a
simulation model.
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II. Selection and Classification Evaluation Model

This chapter describes the Selection and Classification Evaluation Model
(S&CEM) in greater detail. The topics discussed are: (1) the setup of the
problem, (2) the objective function, (3) the dimensions of the model, and
(4) the components of the S&CEM.

Setup of the Problem

Recruiters are actively employed in developing and pursuing leads
concerning potentially qualified people who might be willing to enter the
Army. Under the current selection process, an applicant's qualifications for
military service are generally summarized by his or her scores on the Armed
Forces Qualification Test (AFQT) and education credential. The key
educational distinction is whether or not the applicant has graduated from
high school. An applicant's score on the AFQT indicates his or her aptitude
for the occupations offered by the Services. Applicant scores are typically
summarized by one of six discrete categories: I, II, IIIA, IIIB, IV, and V.
Category I is the highest, whereas Category V recruits--those who score in the
lowest decile on the AFQT--are prohibited by law from entering service.

Applicants who are willing to serve, and who qualify under the current
criteria for enlistment, enter the military for a specified term of service.
An individual recruit's relative performance may vary across occupations, and
an important consideration of the Army is to place the right recruit in the
right occupation. During the first year of service, the recruit receives
basic training and, in most instances, initial skill training. The recruit
may not have the perseverance or ability to complete training, and may leave
the service prior to completion. Upon successful completion of training, the
recruit is assigned to a unit. His or her performance in that unit jointly
produces military readiness and on-the-job training.

The problem for the Army, as we frame it, is to choose the number and
quality mix of recruits (selection). Further, recruits must be allocated
across occupational groups to meet first-term performance goals at the lowest
cost.

Objective Function

The objective function of the linear programming (LP) model is to choose
the number of accessions from each recruit category, defined by scores on
selection and classification tests, to minimize the present value of the costs
of achieving a given level of performance, by occupation, over the first-term
of service. Recruits contribute to the performance constraint in an
occupation as they progress through the system, but recruiting, training, and
compensation costs are also incurred. Performance varies by recruit category
and by occupation within recruit category.

Expected performance over the first-term of service is calculated for
each recruit category (j) and occupation (i) as

48
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where P*j is expected performance oj a recruit from category j in occupation
i over the first-term of service, S*;; is the probability of a recruit from
category j in occupation i surviving ‘to month of service t, and P,; is the
expected performance from a recruit in category j, occupation i.

Similarly, we can calculate T*U and C*”, expected training costs and
expected compensation costs for recruits in category j, occupation i,
respectively, over the first-term of service discounted to the entry point.
Then, the model chooses the number of recruits from recruit category j
allocated to occupation i, A,., to minimize the costs subject to meeting
performance goals, P’,, for each occupation.

Formally, the objective function is to choose A;; to

Minimize} Y A 1T ;5 + C* 5] + YRy (1 4;)) (12)
77 3 i
subject to
P, <Y A, P, Vi (performance constraint) (13)
J
and
E A € 0y A; (supply constraint) (14)
1

where R; is the marginal recruiting cost of recruits in quality category jJ.

This objective function determines the minimum cost quality mix of
recruits, given a first-term performance goal by military occupation. The
performance constraint limits the performance, P’,, allocated to occupation i
to be less than or equal to a predetermined performance goal. The performance
apportioned to occupation i is equal to the sum of the expected value of
performance of a recruit from recruit category j in occupation i over the
first-term of service, P ., multiplied by the number of recruits from recruit
category j allotted to occupation i, A;;. The supply constraint Timits the
number of applicants with a particular ‘attribute related to performance (e.g.,
spatial composite) to a fixed proportion, e, ;, of a larger recruit category,
A.. In fact, the proportions are equal to the proportion of individuals in
the recruiting population exhibiting that particular attribute.

Model Dimensions and Data

Dimensions

This section describes the dimension of the LP model used to evaluate
alternative selection and classification models. There were nine occupational
categories, corresponding to the nine one-digit Department of Defense (DoD)
Enlisted Occupational Areas. Army Military Occupational Specialties (MOS)
were mapped into these nine Occupational Areas, which include (a) Infantry,
Gun Crews, and Seamanship Specialists; (b) Electronic Equipment Repairmen;
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(c) Communications and Intelligence Specialists; (d) Health Care Specialists;
(e) Other Technical and Allied Specialists; (f) Functional Support and
Administration; (g) Electrical/Mechanical Equipment Repairmen; (h) Craftsmen;
and (i) Service and Supply Handlers. Performance goals were specified for
each occupational category. They were typically anchored by estimating the
implied level of expected performance over the first-term of service supplied
by an historical cohort of accessions, as predicted from the performance
equations and the survival patterns of the recruit categories. In this
application we used the performance implied by scoring the Fiscal Year (FY)
1990 Army recruit cohort.

The model included two major categories of recruits: "high" and "low"
quality. "High quality" recruits consisted of recruits scoring in AFQT
Categories I-IIIA who were high school graduates. "Low quality" recruits were
those scoring in AFQT Categories IIIB and IV who were also high school diploma
graduates. Within the high and low quality categories, however, there were a
variable number of subcategories defined by the selection and classification
models being considered. These were assumed to be available in fixed
proportions within a given overall quality category, where the proportions
were determined by the proportions of that subcategory in the synthetic sample
of accessions within the overall category.

For example, high quality recruits consisted of recruits in AFQT
Categories I, II, and IIIA. A given number of high quality recruits, N, were
assumed to consist of proportions X, Y and 1-X-Y of the these three
categories, respectively. A given AFQT category, such as Category I, was
further divided into cells representing score ranges on other tests. The
proportions, again, were determined by the proportions of the synthetic sample
in those cells. In the selection and classification model with the greatest
number of selection and classification tests, a total of 320 performance cells
were defined.

Data

Three types of costs were used in the model: training costs,
compensation costs, and recruiting costs. Training cost data for initial
skill training were from the Army's Training and Doctrine Command (TRADOC)
ATRM-159 report. These data were aggregated from MOS into occupational
categories. The MOS level initial skill training cost data were weighted by
the number of accessions in FY 1990 to form the (weighted) average training
cost within an occupational category.

Compensation costs were computed for the average progressor over the
first-term of service, and included basic pay, allowances, and retirement
accrual. Compensation costs did not vary by occupational category in this
version of the model.

The basic model was an LP, so that a constant (marginal) cost of high
and low quality recruits was included in the LP. However, actual recruiting
costs are non-linear. The marginal costs of high quality recruits, for
example, varies with the number recruited. To account for non-linear
recruiting costs within the context of an LP, we iterated between the LP and a
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non-linear recruiting cost function.® The procedure was the following. A
set of starting values for the marginal costs of recruits were entered into
the linear program. The recruit quality mix implied by the LP solution was
then entered into the recruiting cost function, and new marginal costs were
computed. These became the values for high and low quality recruiting costs
in the LP, and a new LP solution was reached. Iterations between the LP and
the recruiting cost function continued until convergence was achieved.
Typically, this required three to five iterations.

Survival rates by occupational group and AFQT category were estimated
from 1ife tables derived from the FY 1986 cohort of Army accessions.
Accessions were partitioned by occupational group and, within occupational
group, by high school graduation status and AFQT status. Loss rates were
computed over four years of service by counting the numbers surviving at
selected intervals from the accession date to the completion of 48 months of

service.

Prediction of job performance were based on regression models relating a
measure of job performance to entry test scores. The details of these models
are discussed below. Here, it is sufficient to note that these performance
equations were used to score the synthetic sample, which contains the test
scores. The number of tests within a given selection and classification
model, along with how scores were categorized for these tests, define the 320
potential recruit cells or categories from which recruits were drawn and
allocated to occupations.

Major Components

There are four primary components of the S&CEM: (1) the performance
model; (2) survival rates; (3) recruiting, training, and compensation cost;
and (4) the supply model. The model is modular in design, i.e., each of the
components can be modified or replaced without affecting the others.

Performance Model

Of the several components that constitute the S&CEM, the performance
mode] was the most important, because it described the relationship between
job performance and recruit characteristics. The model's equations were used
to predict the expected performance of a potential recruit in each of the
occupational categories considered by the model, based on the recruit's
quality characteristics and the characteristics of alternative occupations.
Recall that the objective function in the model minimized costs subject to the
constraint that the following performance goal was met or exceeded:

p, = Z:Aij p*;,;, Vi (15)
J

where P*r was the expected performance for a recruit from category j selected
into job i over the first-term of service, and Aij was the number of recruits
from category j allocated to job i.

®The non-1inear recruiting cost function used in our analysis is the function we developed for the Army
for the Cost-Performance Tradeoff Model (McCloy et al., 1992).
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Expected performance over the first-term of service was calculated for
each recruit category (j) and occupation (i) as

48
Py = Z: St Py (16)
L=

where St.. was the probability of a recruit from category j in occupation i
surviving to month of service t, and P,; was the expected performance from a
recruit in category j and occupation i.” The performance equations provided
the P;; term in this function.

Since the Project A data are nested, i.e., individuals are nested within
jobs, the multilevel regression methodology used in the Linkage Project was
adapted to estimate Pis» Ina multilevel model, the individual
characteristics are used to predict performance, and job characteristic data
are used to predict variation across jobs in the coefficients of the
individual characteristics (cf. Harris et al., 1991; McCloy, Hedges, & Harris,
1991).

For the present research a fixed effects approximation to the multilevel
regression approach of Harris et al. (1991) was used to provide predicted
performance estimates for the decision model. The regression models have the
following form:

Py = @+ BIC;+ wM; + pIC;M, (17)

where P, is the performance of person j in job i; o, B, and p are the mean
values Of the regression parameters across all jobs; IC. are the individual
characteristics of person j; and M; are the job charactéristic variables for
job i. The job-specific intercepts are modeled by the mM; terms, and the job-
specific slopes are modeled by the pICM; terms (cf. Harris et al., 1991).

The presence of correlated measurement error for all individuals nested
within a given job leads to incorrect standard errors when a conventional
ordinary least-squares (or, "fixed effects") regression procedure is
implemented. Nevertheless, the fixed effects equations can be used to
approximate the multilevel models by including the job characteristic
variables in the model, both as main effects and as interaction terms with the
individual characteristics. Although the parameters' standard errors are
incorrect (usually downwardly biased), the performance predictions typically
change very little (McCloy, Hedges, & Harris, 1991).

The performance data used in the S&CEM were collected as part of Project
A, a larger study of Army job performance sponsored by the Army Research
Institute (Campbell, 1986, 1987; Campbell & Zook, 1990). The database is
comprised of the nine Batch A MOS (and their respective measures), and the ten
Batch Z MOS, for which less extensive performance data (e.g., no MOS-specific
~ job knowledge or hands-on tests) were obtained (see Table 1).

In addition to performance measures, Project A researchers also
developed several new predictor measures covering both the cognitive (e.g.,
written measures of spatial ability, and computerized measures of psychomotor
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TABLE 1

The Military Occupational Specialties (MOS) Studied in Project A

Batch A

11B Infantryman - responsible for
basic weapons, field techniques,
unit tactics

13B Cannon Crewman - participates
in transporting and operating
field artillery equipment

19E Tank Crewman - responsible
for driving tank and operating
weapons system

31C Single Channel Radio Operator
- operates radio, teletype, and
satellite equipment

63B Light-Wheel Vehicle Mechanic
- troubleshoots problems and
performs regular maintenance

88M Motor Transport Operator -
drives large trucks and semi-
trailers

71L Administrative Specialist -
performs variety of clerical and
administrative tasks

91A Medical Care Specialist -
administers emergency treatment
and assists in outpatient and
inpatient care under supervision
of a physician

95B Military Police - supports
battlefield operations, carries
out law enforcement and security
operations

Batch 2

12B Combat Engineer - assists in
construction and demolition
duties in the field

16S MANPADS Crewman - prepares
and fires the MANPADS missile

system

27E TOW/DRAGON Repairer -
performs basic maintenance on TOW
and DRAGON anti-tank missiles

51B Carpentry/Masonry Specialist
- performs basic carpentry and
masonry construction tasks

54E Chemical Operations
Specialist - performs chemical
reconnaissance, operates and
maintains detection and
decontamination equipment

55B Ammunition Specialist -
assists in storage and
maintenance of explosives and
ammunition

67N Utility Helicopter Repairer -
performs basic field and depot
maintenance

76W Petroleum Supply Specialist -
receives, stores, accounts for,
and ships bulk and packaged
petroleum supplies

76Y Unit Supply Specialist -
receives, stores, accounts for,
and issues all supplies for a
unit.

94B Food Service Specialist -
assists in the planning and
preparation of meals

Note: The alphanumeric code is the Army's designation for the M0S. Batch A jobs received
more extensive criterion measurement than Batch Z jobs.




ability and perceptual speed and accuracy), and non-cognitive (e.g.,
temperament, interests) domains. Table 2 lists the composite scores from the
Project A predictor battery that were obtained for this project.

TABLE 2

Composite Scores From the Project A Predictor Battery

Predictor Composite:

From the ASVAB
Technical (TCH)
Mechanical Comprehension
Auto Shop
Electronics Information
Quantitative (QUN)
Quantitative
Arithmetic Reasoning
Verbal (VRB)
Verbal
General Science
Speed (SPD)
Coding Speed
Numerical Operations

From the Paper-and-Pencil Spatial Tests
Spatial (SPT)

From the Computerized Perceptual/Psychomotor Tests

Psychomotor (PSM) Complex Perceptual Speed (CPS)
Complex Perceptual Accuracy (CPA) Number Speed and Accuracy (NSA)
Reaction Speed (SRS) Reaction Accuracy (SRA)

From the ABLE
Achievement Orientation (ACH) Dependabitity (DEP)
Adjustment (ADJ) Physical Condition (CND)

From the AVOICE
Skilled Technical (IST) Structural/Machines (SM)
Combat-Related (ICM) Audiovisual Arts (IAV)
Food Service (IFS) Protective Services (IPS)

From the JOB Questionnaire
Organizational and Co-Worker Support (JSP)
Routine Work (JRT)
Job Autonomy (JAT)

The Project A criteria were used to validate both the new and extant
selection measures. Table 3 details the job performance criterion measures
used in the Project A concurrent validation samples. It is these data from
Project A on the expanded performance and predictor domains that constitute
the database for these analyses.
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TABLE 3

Job Performance Criterion Measures Used in Project A Concurrent
Validation Samples

Measures Used for all MOS

Paper-and-pencil test of Training Achievement developed for each of
the 19 MOS (130-210 items each).

Five performance indicators from administrative records:

Total number of awards and letters of recommendation.
Physical fitness qualification.

Number of disciplinary infractions.

Rifle (M16) marksmanship qualification score.
Promotion rate (in deviation units).

Eleven behaviorally anchored rating scales designed to measure
factors of job-specific performance (e.g., giving peer leadership
and support, maintaining equipment, self-discipline).

Single scale rating of overall job performance.

Single scale rating of NCO (i.e., leadership, supervision) potential.

A 40-item summated rating scale for the assessment of expected combat
performance.

Measures Used Only for Batch A MOS

From 6 to 13 MOS-specific behaviorally anchored rating scales
intended to reflect job-specific technical and task proficiency.

Job sample (hands-on) measures of MOS-specific task profitiency.
Individual is assessed on each of 15 major job tasks.

Paper-and-pencil job knowledge tests (150-200 items) designed to
measure task-specific job knowledge on 30 major job tasks.
Fifteen of the tasks were also measured hands-on.

Rating scale measures of specific task performance on the 15 tasks
measured with the knowledge tests and the hands-on measures.

Situational Measures Included in Criterion Battery

A Job History Questionnaire which asks for information about
frequency and recency of performance of the MOS-specific tasks.

Work Environment Description Questionnaire-a 141-item questionnaire
assessing situational/environmental characteristics, leadership
climate, and reward performance. '
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The performance criterion. The relationship between job performance and
enlistment standards may be expressed as an equation in which performance is a
function of some number of individual characteristics. For example, in the
Linkage Project, scores on the JPM hands-on performance test were modeled as a
function of a soldier's (a) AFQT score, (b) Technical composite score,

(c) high school graduation status, and (d) number of months of military
service (Harris et al., 1991; McCloy et al., 1992). The hands-on test
provides perhaps the best measure available of one's task proficiency.
Administered in a standardized setting, the hands-on test is a maximal
performance measure--it is designed to assess how well an examinee can perform
a particular set of tasks. In this respect, the hands-on test may be termed a
"can-do" measure of performance. As with all maximal performance tests, there
is the implicit assumption that each examinee is trying his or her best. That
js, each examinee is believed to be maximally motivated during the test.

Although there might be a great deal of interest in an individual's
maximal performance, employers and/or supervisors usually have a deeper
interest in how well a person will perform on the job. That is, the question
of primary interest is one concerning each person's typical performance on a
day-to-day basis. Campbell, McCloy, Oppler, and Sager (1992) and McCloy,
Campbell, and Cudeck (1992) have postulated and empirically tested a model of
job performance determinants, arguing that the difference between maximal and
typical performance measures is the degree to which motivation (defined as
three choice behaviors) contributes variance to individual differences on the
measures. Specifically, examinees are assumed to be maximally motivated when
taking maximal performance tests; hence, motivation does not contribute to
variation among test scores. Scores on typical performance measures (e.g., a
supervisor's ratings of how one typically performs job tasks), however, can
vary as a result of the change in the ratee's motivation across time and
situations. As such, typical performance measures allow an extra dimension to
be considered in addition to how well a person can perform job tasks--the
tendency of the person to perform those tasks at a given level of proficiency.

From this perspective, the hands-on test can be argued to be an
incomplete measure of job performance if one's interest Ties primarily with an
individual's typical performance. Note, however, that although typical
performance is argued to be what most employers/supervisors are concerned
about when they talk about performance, the most frequently used measures of
typical performance (i.e., supervisor's ratings) can be fraught with
difficulties. Because ratings are subjective evaluations, there is plenty of
opportunity for criterion contamination (e.g., raters might give more weight
than they should to a relevant performance variable or give some weight to
irrelevant variables such as subgroup membership). Conversely, because
ratings can assess all of the determinants of performance, there is a
concomitant danger that they could be deficient (e.g., raters fail to
adequately weight certain performance determinants). For example, a rater
with Timited opportunity to observe an individual's task performance might
rely primarily on that performer's level of job knowledge when making a
rating, a scenario Hunter (1986) proffered as accounting for the sizable
direct effect of job knowledge on supervisor ratings in his job performance
model.

A measure of total performance can be created by combining measures of
can-do performance (assessing one's maximal performance) and will-do
performance (assessing one's typical performance), thus considering both the
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proficiency of one's performance and the degree to which it is manifested on
the job. Such a composite score was used as the performance criterion in this
research. The components of the total performance criterion are the MOS-
specific written school knowledge test scorg (a can-do measure) and three
will-do composites: Effort and Leadership,” Maintaining Personal Discipline,
and Physical Fitness and Military Bearing (cf. Campbell, McHenry, & Wise,
1990). The four components were standardized within job and then weighted Ry
values of importance obtained in an earlier Project A expert judgment study
(Sadacca, Campbell, White, & DiFazio, 1989). The sum of these standard scores
yields the composite performance criterion.

Individual characteristics. Because the criterion used here is a more
expansive performance variable than the hands-on test score (i.e., it may also
assess individual variation in motivation), there was reason to believe that
significant additional prediction would be provided by expanding our
individual characteristic variables to include non-cognitive measures.
Specifically, the non-cognitive measures from Project A--in particular, scores
on the temperament composites from the Assessment of Background and Life
Experiences (ABLE)--have been shown to provide significant incremental
validity over the cognitive measures in the prediction of the will-do
criterion composites (McHenry et al., 1990). Hence, the non-cognitive
measures were included as predictors of our composite performance criterion.

The individual characteristics that were examined as predictors of the
performance criterion were derived from the Concurrent Validation (CV) sample
from Project A (cf. Campbell, 1986), and are given in Table 2. Predictor
composites were used rather than the individual scales to keep the number of
independent variables at a manageable level. The cognitive predictors
included (a) 4 ASVAB composites, (b) the Project A Spatial composite, which is
a function of 6 paper-and-pencil spatial tests, and (c) 6 composites formed
from the 20 test scores from the Project A computerized test battery of
perceptual speed and psychomotor ability. The Project A non-cognitive
predictors included (a) 4 temperament composites formed from 7 of the 11
substantive scales from the ABLE, (b) 6 interest composites formed from the 21
scales constituting the Army Vocational Interest Career Examination (AVOICE),
?nd gc) 3 composites formed from the 6 scales from the Job Orientation Blank

JoB).

Correction for range restriction. The Project A data were collected on
Army soldiers--individuals who had been selected into the Army on the basis of
their scores on the ASVAB. For this reason, the range of scores on the ASVAB
in the CV database is restricted, as are the scores on any other variables
that are correlated with the ASVAB. The larger the correlation between these
other variables and the ASVAB, the greater the restriction on them. Another

®The Effort and Leadership (ELS) variable for the 8 Batch A MOS is different than that for the
additional 10 Batch Z MOS. For the Batch A MOS, ELS contains two scores from MOS-specific behaviorally
anchored rating scales. The Batch Z MOS do not include this rating scale. Rather than modifying the ELS
composite by removing the MOS-specific ratings, we chose to retain these job-specific rating scales, given
that their overall contribution to the final criterion composite is minimal. The same decision was not made
for the can-do criteria, however, because the disparity between these criteria for Batch A (MOS-specific job
knowledge, hands-on, and school knowledge tests) and Batch Z (MOS-specific school knowledge tests) was
judged to be too great.

°The school knowledge score was weighted by the sum of the values for Core Technical Proficiency and
General Soldiering Proficiency.
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way to say this is that there is explicit selection on the ASVAB, and
incidental selection on the other variables (Lord & Novick, 1968). Both
explicit and incidental selection lead to attenuation of the correlations
between the restricted variables and any other variables. Such attenuation
can be vexing in many applications, but its presence would be particularly
damaging to an evaluation of various selection and classification models. An
unbiased evaluation requires a database from a sample that has not already
been selected and/or classified. In particular, we desire data for the
population from which we select people.

To correct the relationships among the observed variables for range
restriction, a formula given by Lord and Novick (1968, p. 147), was applied to
V, the variance-covariance matrix of the p explicit selection variables and
the q incidental selection variables in the selected group (i.e., the observed
variance-covariance matrix for the predictors and the criterion):

VP:P VP: g

VQ’:P Vqlq

(18)

The correction uses W _ (the variance-covariance matrix of the p explicit
selection variables in the unselected group) and the submatrices of V. For
the current analyses, the population matrix W, _ is the variance-covariance
matrix for the (p=9) ASVAB subtests from the 1830 youth population.’ The g
incidental selection variables are the additional Project A predictors (the
Spatial composite score, the computerized measures, and the ABLE temperament
inventory) and the composite performance criterion (q=21). Formally, the
correction is

-1
g* _ Wo.p Wo.oV p.0Vp.q (19)
¥ -1 - -1 _yp-1 -1 ’
VQ'IP v PP ;VPIP Vq: q VQIP ( v P/ P 14 PP WP:P 4 PP ) VP: g

The resulting matrix S:w contains estimates of the variances of the

predictors and the critériop in the population, and of the covariances between
the measures. The matrjx S, , which has dimensions (p+q, p+q), was scaled to
a correlation matrix, R v Yhe corrected correlation matrix R,y was used for

all subsequent ana]yses.x

Survival Rates

Survival rates, describing the proportion of a given entry cohort that
remains in service for particular durations over the first-term, are important
because they affect expected performance and costs. The recruit must survive
to "be there" to contribute to the performance of the first-term force.
Moreover, recruits who leave service early are costly because this turnover
implicitly generates additional training and recruiting costs.

"here are only 9 subtests here because the matrix contains the Verbal (VE) composite, which is the
sum of the standardized Word Knowledge (WK) and Paragraph Comprehension (PC) subtests.
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The survival rates utilized in this study were obtained from the CPTM
(McCloy, et al., 1992), and predict survival over the first-term of service by
recruit quality category and occupation. They are the "Sﬂ-s" in the model.
The survival estimates for each recruit quality category and occupational
category are combined with the performance estimates to compute the
performance goals, P’., for each occupational category. They also interact
with costs (described below) to produce expected costs over the first-term of
service, by recruit category and occupational category.

Recruiting, Training, and Compensation Costs

The recruiting cost provided an estimate of total recruiting costs as a
function of the total number of recruits accessed in each quality category,
the prices of recruiting resources, and recruiting environment factors, such
as the unemployment rate, size of the youth population, and entry-level
military pay compared to entry-level civilian pay. It was denoted by “R;" in
the mathematical statement of the model.

The recruiting costs for the two recruit quality categories were
obtained indirectly from the recruiting cost function resident in the CPTM
(McCloy et al., 1992). The recruitjng costs in the CPTM were derived from an
underlying enlistment supply curve. The recruiting cost function provided
the minimum cost of recruiting a given number and mix of accessions.

This module included the costs of basic and initial skill training.
Basic training was constant, whereas initial skill training varied by
occupational category. Compensation costs included basic pay, allowances, and
retirement accrual over the first-term of service.

Supply Model

Our framework for evaluating selection and classification tests differs
from some o;pers in that the pool of recruits to be classified was
endogenous.1 Recruiting resources were increased in order to "purchase"
additional higher quality recruits, or reduced to substitute less expensive
lower quality recruits, in order to meet first-term performance goals at the
lowest possible recruiting, training, and compensation costs. The recruit
supply model is the component of the evaluation framework that permits an
"endogenous" enlistment pool.

There are two notable features of this supply model. First, there are
only two broad classes of recruits explicitly determined by the model--"high"
quality recruits (those scoring in the upper half of the AFQT distribution and
who are high school graduates) and "low" quality recruits (those scoring in
AFQT categories IIIB and IV and who are high school graduates.) Yet, there
are 320 performance group categories. The reason for this is that the

12Eantment supply curves have been a major focus of military manpower research since the institution of
an all-volunteer force in 1973. They are empirically estimated equations that describe the number of personnel,
by quality category, that can be recruited as a function of the recruiting environment and the quantity of
recruiting resources employed.

This is in contrast to a framework in which a fixed distribution of recruits are classified based on
performance equations. In our framework, the quality distribution of recruits is determined along with the
allocation to occupational groups. It is in this sense that the recruit distribution is endogenous.
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enlistment supply literature and, indeed, an analysis of actual recruiting
behavior, suggests that differential supply functions for very fine gradations
of recruit quality categories are difficult to identify empirically. Second,
the LP obtains its solution using a constant average cost for high and low
quality recruits, respectively. That is, recruiting costs enter the LP
linearly. Yet, recruiting costs are clearly non-linear. The marginal cost of
additional high quality recruits increases with the numbers recruited. Below
we elaborate on these two features.

The LP model itself recognized only two broad quality categories of
recruits, "high quality" and "low quality". The proportion of high and low
quality recruits obtained varied to minimize the cost of meeting performance
goals. However, within the two broad categories of recruits, other
subcategories were provided in fixed proportion. Hence, recruiting costs
appear as:

Zj: Ry Ay (20)

in the objective function of the LP, where j varied only from 1 (high quality)
to 2 (Tow quality). However, other recruit quality categories, up to 320 of
them, were defined by the particular selection and classification tests
considered in the analysis. The supply of these particular cells or
categories of potential recruits was assumed to be available in fixed
proportions within the high or low quality categories that they fell.
Mathematically, this implied constraints on the supply of recruits of the
following form:

Z Agij = g5 Ay (21)

where o, ; was th proportion of recruits in quality category j that was in
subcategory k.t

Recruiting costs are given by R;--the average recruiting cost for
recruits from broad quality category j. Because it is a Iinear programming
algorithm, the costs are necessarily constant. However, we knew that
recruiting costs for high quality recruits are inherently non-linear,
increasing with the number recruited. To capture this non-linearity, we
iterated between the constant costs of the linear program and a non-linear
recruiting cost function.?® We began with a set of starting values for the

“The "fixed proportion" notion is consistent with a plausible model of the actual recruiting process.
Recruiters can target "high" and "low" quality applicants, perhaps, by choosing where to focus recruiting
efforts. They cannot, however, target particular categories within these broader classes. An analogy to
fishermen casting a net is appropriate. They can choose to effect the average mix of fish by where they
fish but cannot target a specific species.

“The recruiting cost function used in this analysis is that developed for the Linkage Model, also
called the Cost-Performance Tradeoff Model. It is derived directly from a recruit supply curve estimated
using econometric methods. The recruiting cost function computes the costs of high and low quality recruits
as a function of the quantities of recruits and the prices of key resources, such as recruiters,
advertising, and educational incentives, while adjusting for external factors affecting recruiting costs,
such as the level of unemployment, relative military and civilian pay, and the size of the youth population.
See McCloy et al., (1992).
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costs of high and low quality recruits in the linear program. The LP was
exercised, and the resulting quantities of high and low quality recruits in
the initial LP solution were entered into the recruiting cost function. From
the recruiting cost function, we obtained a new set of (marginal) recruiting
costs, to enter into the linear program. The linear program was rerun, and a
new set of gquantities for the recruit quality groups was determined. These
were entered once again into the recruiting cost function. The process was
continued until convergence was achieved. That is, when the quantities of
high and Tow quality recruits produced by the LP solution resulted in marginal
recruiting costs in the recruiting cost function that were approximately equal
to the recruiting costs entered into the LP to produce those quantities,
convergence was (approximately) achieved. Typically, this required three to
five iterations. '

Hence, we iterated between constant recruiting costs of the linear
program and the costs implied by a non-linear recruiting cost function,
simulating a non-linear supply function. It is a property of linear
programming solutions that if the correct marginal cost is included--the
marginal cost that we would obtain at the optimal solution--the linear program
will solve for the correct solution even though the marginal costs are treated
as constant. Our iterative solution method takes advantage of this. While
marginal recruiting costs in the LP were correct, total recruiting costs were
overstated, since average recruiting costs are less than marginal recruiting
costs. For this reason, we estimated recruiting costs by evaluating the
recruiting cost function at the LP solution for the number of high and low
quality recruits.

Summary

The S&CEM developed in this project simulates a one-stage process in
which recruits are simultaneously selected and assigned. This approach is
more efficient than a two-stage process in which selection and classification
are sequential, independent procedures. The objective of the model is to
simulate the effects of changing the type and amount of testing information
available to make selection and assignment decisions. It can also be utilized
to compare selection and classification procedures across different numbers
and configurations of job families.

A modified multilevel regression procedure was employed to compute the
job-specific performance equations. This methodology is designed to produce
relatively stable estimates of performance for a large number of jobs or job
families by using the total sample to estimate individual characteristics
(i.e., test weights) and job characteristic data to model the differences in
performance requirements across jobs. One of the major advantages of
multilevel regression is that it provides the capacity to develop prediction
equations for jobs that do not have criterion data, because the job
characteristics based on job analysis information are substitutes for
performance variables.

The S&CEM is a cost-effectiveness model. That is, alternative test
batteries are evaluated in terms of the recruiting, training, and compensation
costs required to select and assign recruits by AFQT category to meet a priori
performance goals for each job. This method of measuring the utility of
employment testing procedures has two main advantages over the traditional
Brogden-Cronbach-Gleser approach. First, utility is measured in terms of the
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costs of selecting and assigning recruits, instead of the dollar value of
performance, less costs, obtained from alternative batteries. Second, setting
a priori performance goals avoids the problem of using a rational approach for
establishing the value or importance of jobs, because the performance standard
for each job is substituted for value.

There are two major limitations of the S&CEM. First, modifying the
selection and assignment algorithm to simulate a two-stage, sequential,
process could result in a case where the performance goals are met, but with
some selected applicants left unassigned. This is because classification
improves the predicted performance of a selected group over that of simple
selection and random assignment. If recruits are selected to meet a given set
of performance goals across all jobs, an efficient classification procedure
will improve the performance of the group through the allocation process. The
result will be that fewer recruits are needed to meet the performance goal
than were selected. There are a number of ways around this problem. Two
methods would be: (1) constrain the number of person years in the performance
goal for classification to equal the person years that were implicitly
selected to meet the performance goal; or (2{ sell back or credit the total
costs with the marginal cost of any selected applicants that are not required.

A second limitation of the S&CEM pilot tested in this project invoives
the linkage of recruiting costs to AFQT categories. It is increasing marginal
costs that constrains the model from seeking only the highest quality
applicants. If this were not the case the model would choose only AFQT
Category I recruits. A problem will arise if a new applicant attribute is
found to be related to expected performance, but for which there is no
recruiting cost penalty. For example, suppose it were found that left-handers
had significantly higher performance levels than right-handers. In the
absence of a cost penalty or other constraint, a cost-effectiveness model like
the S&CEM will choose all left-handed applicants, even though actual supply
conditions are such that they would not be available. The important point is
that a new applicant attribute related to performance can not be added without
adding something to the recruiting cost function, or other constraint, to
Timit the supply of applicants with that attribute to a realistic number. Our
fixed proportion assumption coupled with the recruiting cost function
addresses this problem.
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III. Method and Results

This chapter presents the results of the pilot test of the Selection and
Classification Evaluation Model (S&CEM). The pilot test consisted of the
cost-effectiveness analysis of four candidate selection and classification
batteries using the one-stage selection and classification methodology. The
following sections discuss our approach to generating the synthetic sample for
the simulations, the prediction equations used to define the testing
scenarios, the four alternative testing scenarios, and the results of the
cost-effectiveness analyses.

Generation of the Synthetic Sample

To evaluate the alternative testing schemes properly, we must actually
use them to select and classify individuals, analyzing the results of each
application. Clearly, a correlation matrix does not contain information about
specific individuals. What is needed is a synthetic sample that may be
selected and classified at will. The synthetic sample must have two
qualities: (1) each person in the sample must have scores on the relevant
variables, and (2) the variables must have the same pattern of relationships
specified by the population correlation matrix.

The second requirement might appear to make generating a synthetic
sample an onerous task. Actually, such sample generation is quite simple (cf.
Johnson, Zeidner, & Leaman, 1992). The goal is to obtain a factor loadings
matrix F with dimensions of (p+q, m), where p+q is the total number of
variables, m is the number of factors, and p+gq=m, such that

R = FF (22)

where R is a correlation matrix (here, R is the corrected correlation matrix,
ny). Once derived, the matrix F is applied to a matrix of random normal
deviates (X.,4) with dimensions (n, p+q), where n is the desired size of the
synthetic sample. There are several ways to obtain F.

One way is to obtain a full principal components solution (i.e., p+q=m)
of the corrected correlation matrix. In components analysis, the loadings of
F are the weights applied to the standardized scores on the components (P) to
reproduce the original variables:

X = PF_, . (23)

Because p+q=m, PF’ . will perfectly reproduce the scores on the observed
variables. That is, me contains all the information about the observed
scores.

Similar to the component scores in P, the variables in X 4 have a mean
of zero and standard deviation of one. To impose the population correlation
structure on X4, simply substitute it for P in equation 23 to yield

Y = XpaF pa - (24)
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The resulting output matrix Y is a raw data matrix with dimensions (n, p+q).
The correlation matrix calculated for the variables in Y matches the corrected
population matrix, except for discrepancies caused by sampling error. In the
present application, the sampling error is minimal, given the size of our
synthetic sample (n = 120,000).

Table 4 contains the frequency, cumulative frequency, percentage, and
cumulative percentage distribution of the absolute difference between the
correlation matrix calculated for the variables in Y and R (the corrected
population matrix). As can be seen, of the 435 unique pairwise correlations
more than 94 percent of the differences are less than 0.0051. This indicates
that the variables in the synthetic sample have essentially the same pattern
of relationships specified by the corrected population correlation matrix.

Table 4

Frequency Distribution of Residuals

Cumulative Cumulative

Range Frequency Frequency Percentage Percentage
.000010 - .0000509 5 5 1.149 1.149
.000051 - .0000999 9 14 2.069 3.128
.000100 - .0005099 53 67 12.184 15.408
.000510 - .0009999 71 138 16.322 31.724
.001000 - .0050999 271 409 62.299 94.023
.005100 - .0099999 26 435 5.977 100.000

Although the principal components solution will provide the desired
results, this is not the approach used by Johnson, Zeidner, and their
colleagues. Rather, they use a loading matrix (call this F_. ) from what they
term a “"Gramian factor solution" (Johnson, Zeidner, & Leaman, 1992, p. F-1).
Their approach was adopted here. The matrix Fata 15 obtained by using the
eigenvectors and eigenvalues of the corrected Correlation matrix in a way that
differs slightly from components analysis.

Consider the components loading matrix F,., first. In terms of
eigenvectors and eigenvalues, this matrix is chiculated thusly:

F.. = WAY? (25)

pea

where W is a matrix of the eigenvectors of R and A is a diagonal matrix of
eigenvalues. To obtain the F for the Gramian factor solution, one simply
postmultiplies Foca by W :




Fora = FoeaW = (WAY2) W . (26)

The principal components are uncorrelated linear composites of the
observed variables that account for the maximal amount of variance in the
observed variables. The variance of the first component is always the
largest, with each subsequent component decreasing in variance. Hence, the
score variance of the observed variables is not evenly distributed througho*;
Foca: The sum of the squared loadings in the k™ column of Foca €quals the Kt
eigenvalue of R. The eigenvalues give the variances of the components, and
the eigenvalues decrease (i.e., 4; > 4, > ... > A). Hence, the majority of
the score variance in the observed variables appears on the left side of Foca

The approach of Johnson and Zeidner redistributes this variance
throughout the matrix, much like gently shaking a box containing a small
amount of sand from side to side more evenly distributes the sand along the
box bottom. The postmultiplication shown in equation 26 standardizes the
variance of each component, transforming F_ .. such that the sum of the squared
loadings for a component equals one for all of the components. Fofa is also
symmetric.

The postmultiplication of Foca by W 1is actually nothing more than an
orthogonal transformation (i.e., rotation) of the components factor loading
matrix, Focas . IN general, a factor loading matrix is transformed by
postmu]tiﬁ?ying it by a transformation matrix, T, to yield a new loading
matrix, F:

F* = FT . (27)

If T is an orthonormal matrix, then TT’ = T'T = I (an identity matrix), and
the transformation is an orthogonal rotation (i.e., the factors are
uncorrelated). Note that the eigenvectors of a symmetric matrix are mutually
orthogonal, with WW = I. This is true even if W has dimensions (p+q, m) with
m < p+q, thereby containing only the first m eigenvectors of the symmetric
matrix. When m = p+q, then WW = I, as well. As mentioned, m = p+q in a full
principal components solution. Hence, the matrix W from a full components
solution is orthonormal. Letting F = WA®* and T = W 1in equation 27 yields

F* = FT = (WAY*)W = Fo,W = Fg, . (28)

poa

Prediction Equations

A number of regression models were estimated using the corrected
population correlation matrix. These regression models related the
performance criterion, P;; (the criterion score of individual j in job i), to
different sets of the individual characteristics. The goal was to obtain a
sample of equations that depicted the effects of additional testing
information (i.e., individual characteristics) on a one-stage selection and
classification model. The regression equations were examined in terms of the
amount of variance they accounted for in the performance criterion. The
predictors used in the equations were the following (see Table 2):

- A, (the nine ASVAB subtests)
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-- A. (the four ASVAB composites)

-- Sp (the Spatial composite)

-- C (the six computer composites)

-- Ab (the four ABLE composites)

- Av (the six AVOICE composites)

-- Jo (the three JOB composites)

-- FS (the four factor scores of job characteristics from the Linkage

Project)

For all the equations reported below, the four factor scores appear (1) as
main effects and (2) in interaction terms with each of the individual
characteristics in the model. This procedure provides the main effects
approximation to the multilevel model that is more appropriate for nested data
(cf. Hogan, McCloy, Harris, & McWhite, 1993). In terms of the individual
characteristics, the following equations were estimated:

L,

3. Py = A, Sp

4. Py = A, Sp

5. Py = A Sp, C

R A A

8. P = A, Sp, C, Ab

9. Pyj = As S, C, Ab, Av

10. Py = A, Sp, C, Ab, Av

1. Py5 = A, Sp, C, Ab, Av, Jo
12. Pij = A., Sp., C, Ab, Av, Jo.

A1l the equations were estimated on the total sample (i.e., there are no job-
specific equations; the factor scores provide for job-specific_variation in
the regression coefficients). The multiple correlations and R? values for
these equations are given in Table 5. The results suggest the following:

(1) The use of all the ASVAB subtests singly outperforms the use
of the ASVAB composites, but only slightly. Given the
additional degrees of freedom they consume, the subtests
were removed from further consideration.

(2) The Spatial composite provides a small but significant
portion of incremental validity over the ASVAB.

(3) The Computer composites do not yield any incremental
validity over the paper-and-pencil cognitive measures.
(Note, however, that later results suggest that the
computerized measures might provide incremental validity in
a particular occupational code.)

(4) The ABLE composites yielg the largest amount of incremental
validity, boosting the R® values several percentage points.

(5) Neither the AVOICE nor the JOB composites provide
incremental validity over the cognitive and ABLE measures.
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TABLE 5

Multiple Correlations for 12 Alternative Equations
for Predicting Performance

Equation R %
Lo Py = A .523 273
2. Py o= A .520 .271
3. Py; = A Sp : .531 .282
4. Py = A, Sp .527 .278
5. Py; = A Sp, C .536 .287
6. Py; = A, Sp, C .532 .283
7. Py = A, Sp, C, Ab .586 .344
8. Py; = A Sp, C, Ab .583 .340
9. Py = A, Sp, C, Ab, Av .593 .351
10. Py; = A;, Sp, C, Ab, Av .590 .348
11. Py = A, Sp, C, Ab, Av, Jo .595 .354
12. Py; = A, Sp, C, Ab, Av, Jo .592 .351

In summary, the new cognitive measures (the spatial and computer tests)
provide minimal incremental validity to the ASVAB, although they exhibit
respectable correlations with the criterion alone. Note that the Spatial
tests could be incorporated into recruit testing with relatively little cost,
given that they are also paper-and-pencil tests. In addition, the
computerized measures are likely at a disadvantage with the present criterion.
They are likely to be most predictive of measures that allow variation in
skill and procedural knowledge, such as hands-on tests (McCloy, 1990;
Campbel1, McCloy, Oppler, & Sager, 1992). The incremental validity that is
witnessed is provided by the ABLE composites. As reported in the previous
Project A research, this set of composites shows substantial incremental
validity over the cognitive measures when a criterion containing will-do
measures is being used. It must be kept in mind, however, that the potential
incremental validity for the ABLE may not be realized to the degree suggested
by the Current Validity (CV) sample estimates. In addition to the fact that
ABLE validity coefficients were lower within the Longitudinal Validity (LV)
sample, research suggests that temperament measures are susceptible to faking
(Young, White, & Oppler, 1991). 1In Tlight of such stability and distortion
issues, the findings regarding ABLE may be overly optimistic.

Based on the regression results just presented, five batteries were
selected for investigation. Specifically, those individual characteristic
composites with significant partial regression coefficients were selected to
form a second class of regression models. In addition, we opted to split the
ASVAB into two pieces: the AFQT (described in terms of composites as QUN and
VRB), and the remaining subtests (described by the TCH and SPD composites).
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This allowed us to examine a test battery matching the current selection
procedure (Battery A below). Five batteries were chosen:

Battery A: AFQT

Battery B: AFQT, TCH, SPD
Battery C: AFQT, TCH, SPD, SPT

Battery D: AFQT, TCH, SPD, SPT, NSA, PSM

Battery E: AFQT, TCH, SPD, SPT, NSA, PSM, CND, DEP, ACH.

Again, the five test batteries also included job characteristic factor scores
as main effects and as integactions with the individual characteristics. The
multiple correlations and R values for these equations are given in Table 6.
Because 1ittle effect was observed for the computerized composites NSA and
PSM, batteries D and E were collapsed to form the following:

Battery F: AFQT, TCH, SPD, SPT, CND, DEP, ACH .

This battery has a multiple correlation of .592 and R? of .350. Based on
these findings, four test batteries were selected for the S&CEM: A, B, C, and
F.

TABLE 6

Multiple Correlations for Six Alternative
Selection and Classification Batteries

Battery R R?
A.  Py; = AFQT .500 .250
B. P;; = AFQT TCH SPD .526 .277
C.  Py; = AFQT TCH SPD SPT .536 .287
D.  Py; = AFQT TCH SPD SPT NSA PSM .538 .290
E. Py; = AFQT TCH SPD SPT NSA PSM CND DEP ACH .594 .353
F. P.. = AFQT TCH SPD SPT CND DEP ACH .592 .350

Each of the four test batteries formed the basis of a separate personnel
enlistment testing condition. We estimated the recruiting, training, and
compensation costs of meeting a given set of performance goals by occupational
area for each of the selection and classification batteries, A, B, C, and F.
The selection and classification composites included in each of the test
batteries is summarized in Table 7. The Battery F equations were used to
project the performance of an historical cohort of recruits. In this
instance, the FY 1990 recruit cohort was used. These projections formed the
performance goals, by occupational group, which were held constant throughout
the analysis.
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TABLE 7

Selection and C]assification Batteries Considered

ASVAB

Battery AFQT Composites Spatial Able R
A X 0.250
B X 0.277
C X X . X 0.287
F X X 0.350

The LP was exercised using weights from the Model F performance
equations for each of the other models. However, the predictors not included
in the models were evaluated at their conditional means. That is, in Model A
an applicants actual AFQT score was used in predicting expected performance,
but the ASVAB composites, spatial test and ABLE were evaluated at the mean,
conditional on the applicant's AFQT score, not the actual scores for the
applicant. Similarly, Model B used the applicants' actual AFQT and ASVAB
composite scores, but spatial and ABLE variables were entered at their means,
conditional on the applicants' AFQT and ASVAB composite scores. In Model F,
of course, all tests were evaluated at the individual's actual scores for
those tests.

By comparing the differences in recruiting, training, and compensation
costs of meeting the same performance goals, we obtained dollar denominated
estimates of the value of additional selection and classification information
provided by each of the test batteries. The value of the tests that are
included in model Y that are not in model X, then, is given by:

Value of incremental tests = C(X) - C(Y)

where C(X) represents the dollar cost of meeting performance goals given the
selection and classification information contained in X.

Results

The results for each of the batteries are shown in Table 8. For Battery
A, the LP suggests that a recruiting cohort of 76,971 recruits and a high
quality mix of 93 percent is the lowest cost way of meeting performance goals.
When additional ASVAB composites are added to the information available for
making selection and classification decisions, almost 2,000 fewer accessions
are required, but the high quality mix of these accessions rises to almost 96
percent. Total costs of meeting performance goals decline from $7,235.5
million to $7,086.1 million, implying that the value of the ASVAB composite
information contained in Battery B is almost $150 million over the first-term
of service, for this Army cohort of recruits.

Battery C adds a spatial composite to the ASVAB battery. The spatial
composite apparently provides information that increases the relative value of
some lower quality recruits, because the high quality mix declines to about 89
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TABLE 8

Results from Selection/Classification Battery Evaluation

Training and Percent

Battery Total Recruiting Compensation High
Costs Costs Costs Accessions  Quality

A $7,235.5M $962.7M $6,272.8M 76,971 93.0

B $7,086.1M $961.8M $6,124.3M 75,110 95.5

C $6,972.0M $845.5M $6,126.5M 75,352 89.2

F $6,812.6M $936.8M $5,875.8M 71,956 98.9

percent. Accessions increase only marginally relative to the Battery B
solution. The incremental value of the spatial composite, in meeting first-
term performance goals, is about $114 million. Finally, the ABLE test battery
is added in F. Total accession requirements decline by about 3,400 relative
to Battery C, and by about 5,000 relative to Battery A. The quality mix rises
to its highest level, almost 99 percent, suggesting that those who are willing
to work hard, as indicated by ABLE, tend also to be the most capable recruits,
as measured by traditional aptitude tests. Adding ABLE to those tests
included in C reduces the total costs of meeting performance goals over the
first-term of service by about $155 million--a measure of the incremental
value of the ABLE tests provided by this evaluation framework.

Note that most of the savings from the additional selection and
classification tests is in training and compensation costs. Recruiting costs
decline only modestly for Batteries B and F, relative to Battery A. Only in
C, when the spatial test is initially added, is there a significant reduction
in recruiting costs.

The following two charts indicate (a) the savings associated with each
model, relative to Battery A and (b) the incremental vaiue of the added tests,
as implied by our cost-effectiveness framework.

Savings Relative to Battery A Incremental Value of
Selection and Classification Tests
Dollars {Mlilions)
so0 Doliars (Millions)

Battery B
. 0 .
Battery C Com'pomos
M Battery F kl Spatial
B ABLE

Figure 1. Cost-effectiveness comparisons of personnel selection and
classification tests
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IV. Discussion and Conclusions

This project had two objectives. The primary goal was to develop a new
methodological framework for evaluating selection and classification
procedures. The second objective was to examine the practical utility of the
model by utilizing it to evaluate the efficiency of a small number of
alternative test batteries.

Unlike previous efforts in this area, the Selection and Classification
Evaluation Model (S&CEM) developed in this study utilizes a cost-effectiveness
framework based on a cost-minimization strategy. This methodology places a
dollar value on the changes in recruiting, compensation, and training
resources that would occur with incremental changes in test batteries and
other components of a selection and classification system. The evaluation
framework improves upon previous research in three major ways.

First, the S&CEM .can simulate three alternative selection and
classification processes: (1) single-stage, (2) multi-stage, and
(3) simultaneous. Previous evaluation models either provided classification
only of a preselected applicant group across multiple jobs, or selection only
into a single job. The procedure examined in this study was single-stage
simultaneous selection and classification, where the number and quality mix of
recruits was determined within the model (as part of the cost minimization
process), according to the enlistment supply and demand relationships that are
part of the model.

Second, the S&CEM estimates the value of incremental tests in a dollar
metric that can be directly related to programs and budgets. In the cost-
effectiveness framework, the value of the selection and classification
information provided by incremental tests is measured by the difference in
recruiting, training, and compensation costs that must be incurred to meet the
performance goals associated with a particular recruit cohort. In the past,
the benefits of improved selection and/or classification were measured either
in terms of the physical units associated with performance measurement, which
begged the question of the "value" of the increased performance, or by a
somewhat ephemeral measure of the dollar value of the 1ncreased "utility"
provided by improved performance.

Third, the model places the estimation of the value of selection and
classification tests within a coherent framework of the recruiting and
training personnel required to meet readiness or performance goals. For the
first time, an evaluation framework considers all, or most, of the key factors
that should affect the costs of meeting readiness goals for the first-term
force, including:

(1) Marginal recruiting costs that differ by quality characteristics
and increase as more are recruited;

(2) Training costs that vary by occupational fie]d;

(3) Attrition rates that vary with recruit quality characteristics; and

(4) Expected performance that changes both among recruits of varying
individual characteristics and among occupations for a given

recruit.
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An application of the S&CEM was conducted in the second phase of this
study to investigate the model's potential usefulness to the Army for
evaluating selection and classification procedures. A single-stage process
was simulated using a Tinear programming model in which synthetic recruits
were simultaneously screened and assigned to one of nine occupational areas to
meet performance goals in those areas at the lowest recruiting, training, and

compensation costs.

Four test batteries, which increased in the number and dimensionality of
the predictors, were evaluated. Battery A contained only the Armed Forces
Qualification Test (AFQT). Battery B added the verbal, quantitative,
technical, and speed composites of the Armed Services Vocational Aptitude
Battery (ASVAB). Battery C added the Project A spatial composite, and Battery
F added the ABLE, a measure of motivation to perform. Each battery was used
to select and classify a synthetic recruit cohort to produce specific levels
of predicted performance in nine occupational areas over four years of
service. The synthetic recruits and the performance standards approximated
the Fiscal Year (FY) 1990 recruit cohort and their predicted levels of job
performance.

Three major conclusions were derived from the results of the pilot test
of the S&CEM. First, adding a spatial composite to the ASVAB (Battery C)
could save the Army up to $114 million in recruiting, training, and
compensation costs for a recruit cohort over four years. Interestingly, the
spatial composite seems particularly useful in finding occupational areas
where lower quality recruits, as measured by AFQT score, with above average
spatial ability would perform well.

Second, adding the ABLE to the ASVAB and a spatial composite (Battery F)
resulted in estimated savings of $160 million relative to Battery C, and the
selection of a higher quality mix of recruits. The latter finding is due to
the high correlation of some ABLE scales with the cognitive predictors.
Lastly, a comparison across all four test batteries showed that adding tests
of new cognitive and noncognitive factors to the ASVAB composites improved
selection and classification decisions by meeting performance goals at lower
costs.

Several limitations in the pilot study analyses were noted. First,
although the linear programming method provided a relatively clear answer to
the question of the value of better selection and classification methods, this
approach assumes an "optimal" selection and classification of recruits based
on expected performance and costs. It does not explicitly consider factors
such as applicant preferences and/or training seat availability that may limit
the extent to which Army counselors could "optimally" classify recruits in
practice. Hence, to the extent that the additional selection and
classification information is used less than "optimally," as defined here, the
values placed on improved selection and classification methods may be
overstated.!® Future research, within this cost-effectiveness framework,
could more closely attempt to model how the information would be used in
practice by Army counselors.

0n the other hand, since we estimate the value as differences from a base case, one might argue that
any overstatement due to the assumption of "optimal" use of the selection and classification information is
impounded in all cases, and that this effect is "differenced out" in the comparisons.
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Second, only two broad categories of recruits were included in the
supply analysis. Moreover, non-high school graduates were excluded in order
to make the number of performance cells (320) tractable. Future research
should attempt to expand the number of recruit supply categories that are
explicitly modeled, and to include non-graduates in the analysis.

Third, we did not explicitly consider the costs associated with
generating better selection and classification information. Rough estimates
indicate that these costs would reduce the incremental value of selection and
classification tests only marginaHy.1

Finally, our analysis was done in a risk neutral, expected value
framework. Improved models of selection and classification undoubtedly
increase the precision with which performance is forecast. If the Army is
risk aversive, then the value of improved selection and classification methods
is understated using our framework. Future efforts could incorporate the
value of improved precision within our overall framework.

A11 1in all, the savings estimated for alternative selection and
classification models should be considered as relative rather than absolute
values. The S&CEM is a useful analytic tool for assessing the potential value
of additional tests developed in non-operational contexts. The evaluation
framework developed here can be applied to a number of different policy issues
facing the Army. Examples of some specific policy questions and issues that
may be evaluated with the current framework include:

\
|
|
|
(1) How would results change if we include more realistic factors, such
as applicant preferences and training seat availability, directly
| in the simulations? What is the value (cost) of limiting
(expanding) applicant choices in classification?

(2) What are the expected costs associated with eliminating a test,
such as Numerical Operations, from the current selection and
classification battery?

(3) What is the "optimal" set of questions to include in an aptitude
| test? Can an "optimal" battery be constructed using the framework?
|
§ (4) What is the dollar value of the tradeoff between tests with less
| adverse impact, but less predictive precision?

In summary, the Selection and Classification Evaluation Model was
developed and pilot tested in this project. The results indicate that a cost-
effectiveness method of evaluating selection and classification procedures is
a useful research and development tool. Future applications of the S&CEM can
be directed toward both expanding the analysis of test batteries and other

components of the Army's selection and classification system and modeling
alternative management policies and environmental factors.

“An upper-bound measure of the additional operating costs of adding tests to the current battery is
about $2 million for Army.
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